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The problem of determining the stress and strain fields in the neighborhood of 
the end of a crack in an elastic-plastic medium is examined, On the basis ofan 
analysis of the energy balance, the inadequacy of solutions obtained in [l - 33 

and taking into account the effect of unloading along the crack edges, is shown 
for a hyperfine structure. It is found that one of the possible reasons for the ori- 
gination of the mentioned situation is the use of deformation theory with isotro- 

pic hardening as well as the isotropic theory of flow for an ideal elastic-plastic 

body for this problem. The asymptotic solution based on the anisotropic theory 
of translation hardening is analyzed, a deduction is made about conservation of 
a singularity of the form 1 / r (for the case of crack propagation) for the product 
of the principal terms of the stress and strain fields. 

1, We consider an elastic-plastic medium with a crack loaded by external forces at 
a sufficiently large distance from the tip. Let the crack be propagated quasistatically 
(inertia terms are not taken into account). 

The problem of determining the stress and strain fields was analyzed by a number of 
authors, where all the complete and incomplete (asymptotic in the sense of expansions 

near the singularity) solutions have been obtained within the framework of two approaches. 
One assumes extrapolation of the solution for a fixed crack to the case of its propagation 
and has the deduction of constancy of the index of the singularity for the product of the 
main terms of the stress and strain tensors for the fundamental result when the physical non- 

linearity increases. The product mentioned is hence on the order of 1 I r (see [4, 51, 
etc. ). Solutions of this kind have been used, in particular, to formulate criteria of ulti- 
mate crack equilibrium [4]. 

Another, physically more consistent, approach has the aim of taking account of the 

unloading effect originating at points of the media adjacent to the crack edges and, per- 
haps, secondary additional loading. Available solutions result in a deduction about the 
reduction of the order of the singularities in the stresses and strains for elastic-plastic bo- 
dies [l- 33. These solutions are used below to analyze the energy balance near thecrack 

tip. 
Let us limit ourselves to the case of antiplane strain along the zs-axis parallel to the 

crack edge, assuming that a rectilinear crack is propagated along the zr -axis. Let the 
material be subject to deformation theory with linear hardening 

For unloading we have 
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zi - zi* = G(yi - ri*), zi* z.z r* = To + g (7* - 70) (1.2) 

and for secondary loading 

zi - ri** = -+ - ri**), z = T** + g (7 - r**) (1.3) 

The quantities ZE, yi in the relationships (1. Q-(1.3) are values of the shear stresses 
and strains and are marked with either one or two asterisks if the values mentioned pre- 
cede the unloading or secondary loading ; the subscript of the 2s -axis is omitted for 
brevity. 

Taking account of the stationarity condition (6 f 6zi + S I 6E = 0), it is easy to 

show (by following [4]) that the first law of thermodynamics for the considered class of 
singularities of the required functions is converted into 

dE = r&i, A=‘iZ)i(gg, K=+pzqg-)2 

Arcs of ihe circles r (XiXf = R”) lying in the primary loading, unloading, and addi- 

tional regions are denoted respectively by Fn (n = 1, 2, 3) ; 6 is the polar angle 
and u, is the displacement along the z3- axis. The left side of (1.4) is invariant relative 
to the selection of R (under the condition of smallness of R as compared to the charac- 
teristic body size and the crack length I) and governs the increment in the total energy 
when I is increased by a unity of length [43. We note that invariance can also be proved 
directly by using the Green’s theorem for each of the regions and taking account of the 
eont~ui~ of Zi, JJi. 

We evaluate the strain energy for (1. I.) - (1.3) and express it in terms of the stress devi- 
ator intensity. Limiting ourselves to the neighborhood D in which 7 > ‘Go, Z* > ‘609 

7** > ~a, we obtain 

2GE, = 9, 2GE, = 22 + 7*2 (h - 1) (1.5) 

2GE3 = 72h + (‘t*” - T**~)(A - I), h = G f g 

The asymptotic solution of the problem formulated above has the structure [Z] 

T2 + iz, = -A_ zm +Bir 6,_1\<6\(@i, i=1,2,3 
X2 

(1.6) 

6, = 0, 83 = ?t, &= ImA =o 

where Ai, Bi are some complex constants sought to the accuracy of an undetermined 

multiplier A, from the condition of continuity on the boundaries 6 = 6,, 6, of the 
domains. The index m of the singulari~ is determined by the equation 

A tg m6, tg m (n - 6,) = 1 (I. 7) 

and satisfies the inequality 0 < m 6 II2 for 0 < g < G. 
Inserting (1.5) and ( 1.6)into (1.4). we have 

Rim2m (A,%, 6,, 6,, h, m) = 237, (1.8) 
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Equation (1.8) cannot besatisfied for arbitrary fi with m < l/s (the purely elastic case 
g = G is thereby excluded), which results in a conclusion about the incorrectness, in the 
sense mentioned, of solutions of the type (1.6). An analogous deduction is aIso valid for 
problems within the framework of an ideally plastic model [l, 31. It is easy to see this 
latter by an analogous means, by using the modification of (1.4) obtained in [4] (see for- 

mula (3.5)). 
On the basis of the above, a deduction can be made about the fact that under the con- 

dition ys # 0 the singularity of the product of the principal stress and strain tensor 

terms should be on the order of 1 I r in a small neighborhood of the crack tip, as in the 
case of a fixed crack. 

2, let us consider some fundamental assumptions underlying the solution of the prob- 
lem posed in Sect. 1, from the viewpoint of their influence on the nature of the singular- 

ity of the solutions. Among them are: the quasistatic nature of the solution, its station- 

arity, and the use of isotropic theories of plasticity. 
1”. We examine the asymptotic solution of the problem on the dynamic stationary 

propagation of the semi- infinite crack. Introducing a moving coordinate system si 
placed at the crack tip, let us assume (%i is the fixed system) 

%1 = 21+ cr, Es = Q, Es = 2s (2.1) 

Using the equations of motion and strain compatibility %1,1 -I- rl,s = pw”,yr,s - vs.2 = 0 
in the fixed system, as well as the relationships (1.1) - (1.3) we obtain in the xi-axes 

at411 4 w&4 =o, 0<6<6, 

B%l + WY22 = p$,23 6, Q 6 d 62 

aw.31 + w,22 = p (1 - pr' (YL2 - Y;,2)* 62 d 6 < = 

a=l - pc= / g, fi = 1 - pc= I G, p = 1 - g/ G 

The boundary conditions are : 

(2.2) 

WTl =O@= O), lwal = I%,1 = id = 0 (le = 63, 6,) (2.3) 

(the square brackets denote jumps in the function). Moreover, w,s = pys*(@ = n) in the 

absence of a secondary loading zone and w,s = /A (1 - p)-” (p* - p**) when it origin- 

ates. Keeping in mind the clarification of the characteristic singularities of the solution, 
let us limit ourselves to the first of the cases mentioned, for brevity. We first consider 
that o > 0, B > 0 fo < 81, which corresponds to values of the velocity c < (g / p)“l. 

We seek the solution of the first equation in (2.2) as 

w = Cr%in ncp (J& tg0 = tg cp, P = s12 + axss) (2.4) 
from which 

p+ = C (m + i)a(*+‘%2* (sin cpl)- co5 mcpl, m = n - i 

tg ‘PI = v-/cc tg 6, 

Using the second of Eqs.(Z. 2)‘ we obtain in the unloading zone 

fixa 
w = s” (A cos no + B sin no) + p s Tz*dxa 

0 

(I/B@ =tg.@, S2= a(d+ b2*)) 

(2.5) 
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C0mpt.Q the strain in (2.4) and (2.5) and using together with (2.3) the condition 
on the free boundary 6 = n, we obtain a system of equations to find the constants A, 
I?, C . Nontrivial solutions of this system exist if 

v/a (1 - /J) ~0s mcpl cos m (ol - n) + v/s sin mcp, sin m (q - n) = 0 (2.6) 

(bi! 01 = v/s tg 6,) 

In the static case (a = B = I) this equation turns into (1.7). Using (2.6) it is easy to 

see that the value m = - 'il which acres the required order of the singularity tivi as 
r --f 0 is possible, as in the static case, for a linearly elastic medium (p = 0) only. 

For (g / pf” < C < (C / p)“: the equation for the displacement in the first zone is of 
hyperbolic type. The solution has the form 

w = c I(51 + I/&z)” - (21 - JGI~z)nJ, IG1z2 < x1, al = pc2 i g -- 1 

The representation (2.5) is conserved in the second zone with the appropriate replace- 
ment for P* in the second member. Omitting the transformations, we present the analog 

to the characteristic equation (2.6) : 

I/S sin m (n - q) [(CO9 ‘pl + sin ‘pJm + (co9 q1 - Sin cpl)“] - 
VG (1 - p) I(cos VI + sin @” 

(2.7) 
- (Co8 q1 - sincp,)ml co9 m (n - co,)=0 

Analysis of (2.7) shows that no solution of the required order exists even for the consi- 
dered interval of crack propagation velocity values. We note that the case a < 0, P < 0 

is physically impossible. 
Therefore, taking account of the inertia terms does not alter the deduction made in 

Sect. 1, about the inadequacy of solutions of the type (1.6) and (2.5), since all the mem- 
bers in the left side of (1.4), including the kinetic enegry, are of the order of lil+zm. 

2”. To estimate the influence of the assumption about the existence of a stationary 
crack propagation mode in an elastic-plastic material, it is sufficient to consider the fol- 

lowing formulation of the problem. 
Let the advancement of the crack be quasistatic and nonstationary so that all the re- 

quired fields and the parameters m, I’,, 6, depend explicitly on I We consider the 

state of the medium preceding the beginning of crack propagation and corresponding to 
some value of the stress intensity factor K, 

FLU 1. iTl” -: K, / (z - lo)“’ (2.8) 

(let us recall that (2.8) is an asymptotic solution (T > T”) of the problem of a fixed 
crack in a medium with the law (1.1)) and the adjacent state characterized by thevalue 
K = K,, -- ,Z K (AK < K,), and Ti = tie -i- ATi, w = ~‘0 f Aw, 1 = 1, + AI. 

Converting the first law of thermodynamics to the case under consideration, we obtain 

Tioviw’dr --I- 
/l s tiosi’dx d y - + s zi”ti’dxdy = 27, (2.9) 

IA 111 

Here D,, D, are loading and unloading zones (we keep in mind the absence of second- 

ary loading, as before), UT’ = aw I a[. 
The asymptotics 

W’ - r -‘/z , Zi’ - ? - ‘in , r--t 0 (2.10) 

follows from (2. 8) and (2.9). 
To seek the solution, we use the theory of flow with isotropic linear hardening 
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Gy,' = T,.’ + /ATO-l~‘z,.D, Gya’ = Ta’ + po-‘T’T*” 

T’Zo = TrOTr’ + Ta”Ta’, p = Gig - 1, 2 = 1, + raia 
TO2 = Ti"Zio = f (q), dq = (2driPdriP)", f' (d > 0 

We should set I_L = 0 in the unloading domain. 
The equilibrium equations are satisfied identically if the function @ (r, 8) (.sr’ = 

SD / r&9, Tat = - 80 / 6’r) is introduced. Assuming CJ = P Y (8) under the condition 
- II1 < m < 0, it is easy to show that there follows from the compatibility equation of 
the strain rates, the boundary conditions, and the continuity conditions for the stress and 
strain rates, it follows 

Y (1 +psin2+ - 
1 ( 

m - +) p sin 6Y’ + (2.11) 

Ym (m- 1) (1+pcos2$) I +i+g= 0, O<<<&; Y’ (0) = 0 

Y” + maY = 0, 6, < 6 < it; Y (n) = 0; [Y @,)I = [Y (&)I = 0 (2.12) 

Moreover, for -6 = 6, the loading is neutral 

mY (8,) co9 m (n - 6,) + Y’ (81) sin m (n - 01) = 0 (2.13) 

As is easy to verify, the boundary value problem (2.12), (2.13) has a nontrivial solution 
if sin [mn + (l/i - m) S,] = 0. &terming the value-of the angle 6, as a function of 
the exponent of the sihgularity we have 

6, = mn / (m - l/J (2.14) 

Now, let us examine the boundary value problem (2. ll), (2.13), which should have the 
eigenvalue m = - l/a, because of (2. lo), and show that it has no nontrivial solutions 
for P $2 0. 

Assuming that the solution is analytic in the neighborhood of p = 0 

Y (8, p) = Y, (8) + pYr@) + /..4? ‘y, (8) + . . . (2.15) 

it is clear that the function Y,, (6) yields the solution of the linear elastic problem. 
For the sequel it is sufficient to consider the case p = o (I), hence, retaining terms 

not above the first order in the expansion (2.15), andinserting them into (2. ll), we obtain 
equations to determine the functions Y, (O), Yl (8) 

L[Yo(O)]=O, L[Yl(zf)]+M[Yo(6)]=0, L[Y]zY”+ + Y (2.16) 

1I4[Y]=Ysi*s~+Y’sin6 -+Y(1-33cosa+) 

Omitting the appropriate transformations, we indicate that the solutions of (2.16) are 
easily sought in explicit form and contain four arbitrary constants. These latter are de- 
termined from a system of linear equations resulting from the boundary conditions in 

(2. ll), (2.13) and the evenness condition for Y, (@), Yr (6). The system mentioned has 
nontrivial solutions for p = 0 only. 

Therefore, the asymptotic form (2.10) cannot be obtained for p # 0 and therefore the 
assumption about the stationarity of the crack development mode is not a reason for the 

inadequacy of the solutions under consideration. 

3”. Let us consider the question of the validity of using different plasticity theories 
for problems of crack advancement. 
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We show first that deformation theory with isotropic hardening is inconsistent for prob- 
lems of the type mentioned. In fact, loading at any point belonging to a small neighbor- 

hood of the tip differs from the proportional in contrast to the case of a fixed crack, 
hence, use of finite “stress-strain” relations can result in violation of the Drucker postu- 
late. Budiansky [6] showed that the deformation theory is not contradictory in the men- 
tioned sense if the relationship 

a < B (tg B = (G,G - GtG,) / (GtG - G,G,)) (2.17) 

is satisfied for any instant of the loading process, where cc is the angle between theradius- 
vector of a point in the stress deviator space and the tangent to the loading trajectory, 
Gt, G, are the tangent and secant moduli, and G is the unloading modulus. 

In the plasticity theory (1. 1) - (1.3) we have Gt = G, (for the asymptotic solution) 
and because of (2.17) fi=a-~l4, a<n/4 (2.18) 

Using the solution (1.6), for the loading zone, say, we find the boundary of the integral 
for the value of 6 corresponding to the inequality (2. 18). Varying (1.6), we find that 

Taking into account that ZSZ cos a = ri&ri, we have a = 2) for the loading angle a 

We hence obtain the required inequality 6 < n / 4 from (2.18). Hence, the inequality 
(2.17) is violated for the sector n / 4 < 6 < 6r (belonging to the loading zone for 6, > 

n / 4) , and the use of the deformation theory cannot be considered justified. This latter 
is also clear in connection with the known fact of the absence of continuity of the plas- 
tic shear modulus during the transition from active loading to unloading [‘I]. Hence, 
none of the neutral loading conditions lim z’ = 0 is successfully satisfied for 6 -+ 6i 2 0 

in the solution of the boundary value problem (which results in the loss of a relationship 
analogous to (2.14) ) . 

The problems considered in [l] as well as in Sect. 2”, yield a foundation, to a known 

degree, for pessimistic deductions relative to the use of isotropic flow theory also. It is 
known [‘l’] that test data verify the theory of flow with anisotropic hardening more com- 
pletely for multilinked loading trajectories. Hence, one of the versions of a theory of 

the kind mentioned is examined below. 

3. Let us assume that hardening is translational in nature and there is no initial ani- 
sotropy of the medium. In the linear hardening case the governing relationships are 

Ti’ Z ri*e + Ti’P, +Ii*e = + , Ti’” = -& (z;q’) zi (3.1) 

ziO = zi - si, Si = ayiP, Zi”7io = k2, a>Q, i-1-2 

Using the relationships (3. l), we estimate the residual strains in the neighborhood of 
a point of the medium at a short distance 2s form OX,. The loading trajectory in the 
stress space is shown by the line oabco in Fig. 1 and is close to the four-section broken 
line OABCO . The initial loading surface S, is the circle of radius k (k is the pure 
shear yield point). Integrating (3. 1) along OABC and marking the values of the elastic 
and plastic strain components corresponding to the angular points of the trajectory by 

superscripts, we obtain 
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(OA): q=o, TX0 = 0, s, = 0, ylp = y; = 0 
z,O = z, - s, = k, 0 < za < T, (yzp)_4 = (T - k) / a 
(yaP)aa = T / G (T --t m) 

(A@: - T < z1 6 0, z, = T, 7; = T - s,, (yl”)B = 

(x - 0 1 a (~1% = - T / G, (yzp)n = (T + q) / a 

(~2% = CT + q) / G 
q2 = k2 _ @‘, x = k (1 - e-2Tlk) / (1 + e-2Tlk) 

(BC): ‘h = - T, 0 < z, < T, %lo = - T - 9, (Ya% = 0 
(r2p)c = 4 (1 - e-zTIk 2) (1 + e-zT/k?&$) 

(rl’), = - -g , (TIP), = - $ + f [k2 - (q2P)211~ 

hP)c = - f (T 3 -) 

Keeping in mind the asymptotic analysis (the trajectory abc), let us give an estimate 
of the residual (inelastic) strains near the upper edge of the crack 

71” = - f +O(‘I), rs*= O(l), T-+ 00 (3.2) 

Therefore, the shear strain yip evaluated by the theory of translational hardening is 
large while the quantity yap remains bounded. Within the framework of isotropic theory 

an analogous deduction is valid only for 
a fixedcrack [4] (upon conservation of the 

singularity 1 / r). It should be noted that 
the governing relationships of the theory 
under consideration correspond to strain 

Fig. 1 Fig. 2 

with negative dissipation for certain loading paths, hence, the explanation presented 

above is apparently not uniquely possible. 

4, Let us consider the asymptotic solution of the problem of quasistatic stationary 
crack growth in an elastic-plastic material with the linear translational hardening (3.1). 

For simplification, we formulate final relationships of deformation theory correspond- 
ing to the relationships (3.1) under a uniaxial loading. As is easy to see, these latter are 

+ri = GTi (Y < Yo) (4.1) 
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2k -- 7t*---r* G 

zi - zi **=+(ri-%**) (7\<7***d7<0) (4.4) 

~=~**i-dY-7**) 

zi - %*** = G (yi - yi***) (y < ye*, dy > 0), z**= zs - 2k (4.5) 

The stress and strain components in (4.1) - (4.5) which are marked by one, two and three 
asterisks, are, respectively, related to the dependences (4.2) - (4.4), where we should sub- 

stitute Y = Y*$ Y**, VW** 
For the uniaxial case the r - y diagram is shown in Fig.2 (N = N (2,, r*>, P = 

p (a **, Y**), Q = Q b ***, y***)), from which it follows that the loading at any point 
of the medium 1 x2 1 = o (1) in the primary loading zone in front of the crack tip fol- 
lows the section MN. Unloading sets in during crack growth by first following the sec- 

tion NP with modulus G and then the section PQ (modulus g). 
If there is a secondary loading zone, the state of stress follows the links QR, RN, etc. 

The solution is 
z, + ir, = ./11, O,<S,<$ (4.6) 

z 

m>O, fmA,=O, r>k; Y = 2,...,n 

where 6,, 6, are the asymptotic slopes of the tangents to the boundaries of the primary 
loading zone, the lines separating the unloading zones (v = 2, . . .) and the correspond- 
ing points N, P, Q, R, . . .; m is the exponent of the singularity which is not known 

in advance, and n is the number of the zones, 
Evaluating the intensity of the shear stresses in (4.6) for 6, < 6 < $s and taking 

account of the conditions 

we obtain 

‘t (6,) = r*, z (6,) = z**, ‘t** - z* = 2k 

22 + I a [A, (sin ~~)~e-*~~l + &I - gmiz [A, (sin 8s)me-imsz + Bsj = 2k (4.7) 

Taking account of the singular nature of the solution and retaining terms of the order 
of .$Wz in (4.7) as xs -+ 0, we see that a nontrivial solution exists only for 6, = 6,. 
This should have been expected since:it is evident in advance that the zone 6, < 6 .< 
6, corresponding to NP is degenerate for the asymptotic solution (r --f 0, T* + m) 

atthelme 6 = 6, = 6,. We note that the assertion proved is equivalent to identifi- 

cation of the points N and P of the diagram. 
An analogous deduction is evidently valid for any zone in which the relationships with 

modulus G from (4.1) - (4.5) hold (for example, for the section VR in Fig. 2). There- 
fore, for points of the media lying in a small neighborhood of the crack tip, the strain 
asymptotically follows the hardening section (4.2). 
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Now, requiring continuity of the stress on 6 = 6, and complying with the condition 
z, = 0 for @ = n, omitting simple rn~~Iatio~, we obtain B, = 0, A, = A,, 

m = ‘iz (v = 2, . . ., n). Xt follows that the singular solution of the problem has the 
same exponent of the singularity for the linear hardening case as the elastic solution has, 
Hence, the principal term is ziyi N 1 / r as r -+ 0. This last result is easily extended 
to the nonlinear hardening case. 

Within the framework of the concepts of quasi-brittle fracture, it also follows from 
the relationships (1.4) and (4.6) that the ultimate equilibrium criterion, given a rigorous 
foundation for linearly elastic media, is valid even under elastic-plastic strain (the quan- 

tity A, has the meaning of the coefficient of intensity of the hyperfine structure). 
We note that the complete solution of the problem which takes account of the ‘~1, yi 

fields far from the tip (and, in particular, governing the value of A,) will differ from 
the linearly elastic value, hence, Al does not agree with the fine structure intensity 
coefficient. It follows from dimensional analysis that 

(L is the characteristic dimension of the body, z, is the external load), hence, the quasi- 
brittle fracture criterion can depend on the ratio between the tangent modulus and the 
unloading modulus. 

The author is grateful to L. A. Galin, V. D, Kliushnikov and G, P. Cherepanov for valu- 

able discussions of the results of the research. 
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